Investigating how tree characteristics interact to help us produce ‘good’ trees in a changing environment.

Although in tree biology we often study single characteristics or ‘traits’, we know that in reality natural selection has acted on all traits at the same time. The tree we see in the forest is the outcome of maximising different essential functions of the tree under pressure from the living and physical environment. Tree breeders have typically focussed on improving some traits, like growth rate or productivity, at the expense of other potentially valuable characteristics. But in a changing world, where future environments are uncertain, we need to find ways to make forests resilient, and making more use of a wider range of the traits of a tree is key.

In the B4EST project, we will use specially selected populations of trees to study how different traits, like growth rate, pest and disease resistance, drought tolerance and seed production, work together. For example, a tree that invests a lot of resources in disease resistance might not grow as tall as others; in this case we would try to find good combinations of these characteristics that mean we have productive trees that are also able to tolerate disease.

We will study how these interactions change when the trees are planted in different environments and how they work in different species. We will try to find the genes that control these combinations of traits and use the knowledge we gain to find ways to breed trees that are diverse, resilient and productive at the same time. In this way, we hope to help secure our forests against the uncertainty of environmental change.

The work described above is being completed within B4EST Work Package 2 which is led by Ricardo Alia from CIFOR-INIA.

Leave a Reply

Your email address will not be published. Required fields are marked *